´╗┐


Milwaukee Admirals

GP: 7 | W: 4 | L: 3 | OTL: 0 | P: 8
GF: 5 | GA: 6 | PP%: 20.00% | PK%: 86.21%
GM : | Morale : 40 | Team Overall : 54
Next Games vs Rockford IceHogs
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Andy AndreoffXX100.006077717073455562754762625862526340580
2Daniel ClearyXX100.00614173697250435835525459548878540580
3Brendan GaunceXX100.005436826876464959705256655556528740570
4Mark ZengerleXX100.004635778062495260305952515666614740570
5Max FribergXX100.004735797168474758305553625460507140560
6Michael SgarbossaX100.005136697267464059435655605560487140560
7Brian McGrattanX100.00656857648752435430495151528270540550
8Jiri SekacX100.005938806970464758315550595360497140550
9Tyler GaudetXX100.005235786478454252724948725058437940550
10Rob BordsonX100.005035776975464454315151515268573940540
11Greg PaterynX100.008362776380504447304843664864535540580
12Mike KostkaX100.005136776474484754304948705374621540580
13Dan BiegaX100.005945666571524448304443654862556340560
14Stu BickelX100.007384506181564146304243564772622340560
15Josh MorrisseyX100.005135737169464052304644635054529540550
16Brady AustinX100.005135766184475145304343574758537940540
17Reid McNeillX100.005846636083504445304341574760507140540
Scratches
1Benn FerrieroX100.004935766864454056335052575370603140540
2Aaron PalushajX100.005035727168464054305151505366594740530
3Colton BeckX100.004635807765454053405050505364605540530
4Eric FailleXX100.004535827666454050344647505266614740520
5Ryan Kujawinski (R)X100.005035756876464154425148505154409540520
6Sahir GillX100.004535827764454050304647505160567140520
7Branden TroockX100.005035756778454052304849505156428740510
8Morgan Klimchuk (R)X100.004635817067454050304747505054499540510
9Raphael BussieresXX100.005035756479474052404946505058457940510
10Eric RobinsonX100.004635767175474048324144494364585540500
11Jesse BlackerX100.005035746570454048304444574962616340530
12Mattias BackmanX100.004935776774474749304646544960467140530
13Cody CorbettX100.004835787171454046304043534958547940520
14Gleason FournierX100.004835916269484044303940534062616340520
15William WrennX100.005235736074454048303942524962446340510
TEAM AVERAGE100.00534175687347435236484856516354614054
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Juuse Saros100.00585062616968646465685554509540610
2Pheonix Copley100.00515366816355585959575560577140590
Scratches
1Eric Hartzell100.00455058816054494746605566494740550
2Jeff Malcolm100.00455157736051474646535566604740530
3Nick Schneider (R)100.00455065736045454747485550479540510
TEAM AVERAGE100.0049516274625553535357555953714056
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brendan GaunceMilwaukee Admirals (NSH)C/LW734700019100030.00%213218.901233210000140162.28%11400001.0600000201
2Max FribergMilwaukee Admirals (NSH)LW/RW715602001011009.09%012618.09022222000010028.57%700000.9500000002
3Mike KostkaMilwaukee Admirals (NSH)D72352001480025.00%914620.90213522000017100.00%000000.6800000010
4Andy AndreoffMilwaukee Admirals (NSH)C/LW7314-16013790033.33%014020.011013210000181057.89%13300000.5700000000
5Mark ZengerleMilwaukee Admirals (NSH)C/RW7134-3202814007.14%014020.130112220000130046.15%1300000.5700000000
6Brian McGrattanMilwaukee Admirals (NSH)RW7213-112025480025.00%012517.92101123000001066.67%600000.4800000011
7Tyler GaudetMilwaukee Admirals (NSH)C/LW721326068100020.00%111216.08101151011141046.15%1300000.5300000001
8Brady AustinMilwaukee Admirals (NSH)D7022-300302000.00%311015.7801111011012000.00%000000.3600000000
9Dan BiegaMilwaukee Admirals (NSH)D7022-100423000.00%813619.50000121000021000.00%000000.2900000000
10Greg PaterynMilwaukee Admirals (NSH)D702231001348000.00%412718.25022323000017000.00%000000.3100000000
11Jiri SekacMilwaukee Admirals (NSH)LW7022-2406413000.00%17610.9500000000000033.33%300000.5200000100
12Josh MorrisseyMilwaukee Admirals (NSH)D7101-4003540025.00%411115.990002700006000.00%000000.1800000010
13Michael SgarbossaMilwaukee Admirals (NSH)C710102051511009.09%310915.6100015000080040.00%7500000.1800000100
14Rob BordsonMilwaukee Admirals (NSH)LW7011100343000.00%0679.700000100110120045.45%1100000.2900000000
15Stu BickelMilwaukee Admirals (NSH)D7011-180913000.00%213619.5201112100001800100.00%100000.1500000000
16Daniel ClearyMilwaukee Admirals (NSH)LW/RW7000000857000.00%014520.720003220001200030.43%4600000.0000000000
17Reid McNeillMilwaukee Admirals (NSH)D70000801003000.00%57310.480003600009000.00%400000.0000000000
Team Total or Average119162844-8600112901270012.60%42201916.97610163225912322074150.94%42600000.4400000435
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosMilwaukee Admirals (NSH)74300.8672.0640700141050000.000070000
2Pheonix CopleyMilwaukee Admirals (NSH)10000.8335.461100160000.000007000
Team Total or Average84300.8652.1541800151110000.000077000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Aaron PalushajMilwaukee Admirals (NSH)RW289/7/1989No188 Lbs6 ft0NoNoNo5UFAPro & Farm
Andy AndreoffMilwaukee Admirals (NSH)C/LW265/17/1991No203 Lbs6 ft1NoNoNo2RFAPro & FarmNHL Link
Benn FerrieroMilwaukee Admirals (NSH)RW304/29/1987No185 Lbs5 ft11NoNoNo3UFAPro & Farm
Brady AustinMilwaukee Admirals (NSH)D246/16/1993No232 Lbs6 ft3NoNoNo4RFAPro & Farm
Branden TroockMilwaukee Admirals (NSH)RW233/20/1994No215 Lbs6 ft2NoNoNo4RFAPro & Farm
Brendan GaunceMilwaukee Admirals (NSH)C/LW233/25/1994No207 Lbs6 ft2NoNoNo5RFAPro & FarmNHL Link
Brian McGrattanMilwaukee Admirals (NSH)RW369/2/1981No235 Lbs6 ft4NoNoNo5UFAPro & Farm
Cody CorbettMilwaukee Admirals (NSH)D2312/14/1993No194 Lbs6 ft1NoNoNo3RFAPro & Farm
Colton BeckMilwaukee Admirals (NSH)C276/10/1990No187 Lbs5 ft11NoNoNo2RFAPro & Farm
Dan BiegaMilwaukee Admirals (NSH)D269/29/1991No205 Lbs6 ft0NoNoNo2RFAPro & Farm
Daniel ClearyMilwaukee Admirals (NSH)LW/RW3812/18/1978No208 Lbs6 ft0NoNoNo5UFAPro & Farm
Eric FailleMilwaukee Admirals (NSH)C/RW287/27/1989No180 Lbs6 ft0NoNoNo4UFAPro & Farm
Eric HartzellMilwaukee Admirals (NSH)C/LW/RW285/28/1989No200 Lbs6 ft4NoNoNo4UFAPro & Farm
Eric RobinsonMilwaukee Admirals (NSH)C275/23/1990No200 Lbs6 ft2NoNoNo2RFAPro & Farm
Gleason FournierMilwaukee Admirals (NSH)D269/8/1991No195 Lbs6 ft0NoNoNo3RFAPro & Farm
Greg PaterynMilwaukee Admirals (NSH)D276/20/1990No223 Lbs6 ft2NoNoNo2RFAPro & FarmNHL Link
Jeff MalcolmMilwaukee Admirals (NSH)D284/13/1989No185 Lbs6 ft2NoNoNo4UFAPro & Farm
Jesse BlackerMilwaukee Admirals (NSH)D264/19/1991No190 Lbs6 ft1NoNoNo2RFAPro & Farm
Jiri SekacMilwaukee Admirals (NSH)LW256/10/1992No185 Lbs6 ft1NoNoNo2RFAPro & Farm
Josh MorrisseyMilwaukee Admirals (NSH)D223/28/1995No195 Lbs6 ft0NoNoNo2ELCPro & FarmNHL Link
Juuse SarosMilwaukee Admirals (NSH)C224/19/1995No180 Lbs5 ft11NoNoNo2ELCPro & FarmNHL Link
Mark ZengerleMilwaukee Admirals (NSH)C/RW285/12/1989No185 Lbs5 ft10NoNoNo1UFAPro & Farm
Mattias BackmanMilwaukee Admirals (NSH)D2510/3/1992No185 Lbs6 ft3NoNoNo4RFAPro & Farm
Max FribergMilwaukee Admirals (NSH)LW/RW2411/20/1992No200 Lbs5 ft11NoNoNo1RFAPro & Farm
Michael SgarbossaMilwaukee Admirals (NSH)C257/25/1992No186 Lbs6 ft0NoNoNo5RFAPro & FarmNHL Link
Mike KostkaMilwaukee Admirals (NSH)D3111/28/1985No210 Lbs6 ft1NoNoNo1UFAPro & Farm
Morgan KlimchukMilwaukee Admirals (NSH)LW223/2/1995Yes185 Lbs6 ft0NoNoNo2ELCPro & Farm
Nick SchneiderMilwaukee Admirals (NSH)RW207/31/1997Yes180 Lbs6 ft2NoNoNo4ELCPro & Farm
Pheonix CopleyMilwaukee Admirals (NSH)RW251/18/1992No196 Lbs6 ft4NoNoNo2RFAPro & Farm
Raphael BussieresMilwaukee Admirals (NSH)C/LW2411/5/1993No220 Lbs6 ft2NoNoNo4RFAPro & Farm
Reid McNeillMilwaukee Admirals (NSH)D254/29/1992No215 Lbs6 ft4NoNoNo1RFAPro & Farm
Rob BordsonMilwaukee Admirals (NSH)LW296/9/1988No199 Lbs6 ft2NoNoNo2UFAPro & Farm
Ryan KujawinskiMilwaukee Admirals (NSH)C223/30/1995Yes205 Lbs6 ft2NoNoNo3ELCPro & Farm
Sahir GillMilwaukee Admirals (NSH)LW254/21/1992No185 Lbs5 ft11NoNoNo4RFAPro & Farm
Stu BickelMilwaukee Admirals (NSH)D3110/2/1986No207 Lbs6 ft4NoNoNo4UFAPro & Farm
Tyler GaudetMilwaukee Admirals (NSH)C/LW244/4/1993No205 Lbs6 ft3NoNoNo2RFAPro & Farm
William WrennMilwaukee Admirals (NSH)D263/16/1991No210 Lbs6 ft1NoNoNo3RFAPro & Farm
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3726.19199 Lbs6 ft12.970$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel ClearyAndy AndreoffMark Zengerle40122
2Max FribergBrendan GaunceBrian McGrattan30122
3Tyler GaudetMichael SgarbossaDaniel Cleary20122
4Jiri SekacAndy AndreoffMark Zengerle10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike KostkaGreg Pateryn40122
2Dan BiegaStu Bickel30122
3Josh MorrisseyBrady Austin20122
4Reid McNeillMike Kostka10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Daniel ClearyAndy AndreoffMark Zengerle60122
2Max FribergBrendan GaunceBrian McGrattan40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike KostkaGreg Pateryn60122
2Dan BiegaStu Bickel40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Daniel ClearyAndy Andreoff60122
2Mark ZengerleBrendan Gaunce40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike KostkaGreg Pateryn60122
2Dan BiegaStu Bickel40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Daniel Cleary60122Mike KostkaGreg Pateryn60122
2Andy Andreoff40122Dan BiegaStu Bickel40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Daniel ClearyAndy Andreoff60122
2Mark ZengerleBrendan Gaunce40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mike KostkaGreg Pateryn60122
2Dan BiegaStu Bickel40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Daniel ClearyAndy AndreoffMark ZengerleMike KostkaGreg Pateryn
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Daniel ClearyAndy AndreoffMark ZengerleMike KostkaGreg Pateryn
Extra Forwards
Normal PowerPlayPenalty Kill
Rob Bordson, Michael Sgarbossa, Tyler GaudetRob Bordson, Michael SgarbossaTyler Gaudet
Extra Defensemen
Normal PowerPlayPenalty Kill
Josh Morrissey, Brady Austin, Reid McNeillJosh MorrisseyBrady Austin, Reid McNeill
Penalty Shots
Daniel Cleary, Andy Andreoff, Mark Zengerle, Brendan Gaunce, Max Friberg
Goalie
#1 : Juuse Saros, #2 : Pheonix Copley
Custom OT Lines Forwards
Daniel Cleary, Andy Andreoff, Mark Zengerle, Brendan Gaunce, Max Friberg, Michael Sgarbossa, Michael Sgarbossa, Brian McGrattan, Tyler Gaudet, Jiri Sekac, Rob Bordson
Custom OT Lines Defensemen
Mike Kostka, Greg Pateryn, Dan Biega, Stu Bickel, Josh Morrissey


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Charlotte Checkers22000000523110000002111100000031241.0005813007540314449350306143613215.38%60100.00%09218051.11%7014946.98%5610056.00%167114162508944
2Chicago Wolves2020000058-31010000023-11010000035-200.00051015007540374449350351222426233.33%11281.82%19218051.11%7014946.98%5610056.00%167114162508944
3Peoria Rivermen11000000321000000000001100000032121.0003580075402944493501986126233.33%3166.67%09218051.11%7014946.98%5610056.00%167114162508944
4Rockford IceHogs211000003301010000012-11100000021120.50036900754031444935027161822500.00%9188.89%09218051.11%7014946.98%5610056.00%167114162508944
Since Last GM Reset74300000161513120000056-143100000119280.5711629450075401284449350111426011230620.00%29486.21%19218051.11%7014946.98%5610056.00%167114162508944
Total74300000161513120000056-143100000119280.5711629450075401284449350111426011230620.00%29486.21%19218051.11%7014946.98%5610056.00%167114162508944
Vs Conference74300000161513120000056-143100000119280.5711629450075401284449350111426011230620.00%29486.21%19218051.11%7014946.98%5610056.00%167114162508944
Vs Division2430000058-31120000023-11310000035-282.00051015007540374449350351222426233.33%11281.82%19218051.11%7014946.98%5610056.00%167114162508944

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
78W1162945128111426011200
All Games
GPWLOTWOTL SOWSOLGFGA
74300001615
Home Games
GPWLOTWOTL SOWSOLGFGA
312000056
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4310000119
Last 10 Games
WLOTWOTL SOWSOL
430000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
30620.00%29486.21%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
44493507540
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
9218051.11%7014946.98%5610056.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
167114162508944


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2017-05-1515Rockford IceHogs2Milwaukee Admirals1LBoxScore
6 - 2017-05-1826Milwaukee Admirals3Peoria Rivermen2WBoxScore
11 - 2017-05-2342Charlotte Checkers1Milwaukee Admirals2WBoxScore
14 - 2017-05-2658Milwaukee Admirals2Rockford IceHogs1WBoxScore
18 - 2017-05-3073Chicago Wolves3Milwaukee Admirals2LBoxScore
21 - 2017-06-0288Milwaukee Admirals3Chicago Wolves5LBoxScore
22 - 2017-06-0391Milwaukee Admirals3Charlotte Checkers1WBoxScore
27 - 2017-06-08117Peoria Rivermen-Milwaukee Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 0$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 7 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1441326020307097-2722712010203443-922614010103654-182670108178252526147701227229238168032664406991561811.54%1942388.14%2559106152.69%611117951.82%30960551.07%10136821082339562272
25814270535494122-2829711052225158-729716001324364-21289415524925382719129783213093146510443525589381912010.47%2482490.32%5788142155.45%811149754.18%40775653.84%13589111426447762377
378293303454136144-8391515020347374-1391418014206370-758136232368084742391012554213964185113223798121260266249.02%3364486.90%51089191756.81%1060201252.68%587101158.06%1818122619066021012500
474300000161513120000056-143100000119281629450075401284449350111426011230620.00%29486.21%19218051.11%7014946.98%5610056.00%167114162508944
Total Regular Season18760890107138316378-6293304008276163181-1894304902562153197-44120316524840418117100762930621013983100513232801039187030096436810.58%8079588.23%132528457955.21%2552483752.76%1359247254.98%435829354578143824271195