Chicago Wolves
GP: 6 | W: 3 | L: 2 | OTL: 1 | P: 7
GF: 12 | GA: 13 | PP%: 10.34% | PK%: 86.21%
GM : | Morale : 40 | Team Overall : 62
Next Games #156 vs Texas Stars
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Tobias RiederX100.0067398366707382656863617666736751406502810$
2Kyle CliffordX100.0083756364837986615462635661776962406403010$
3Zac DalpeX100.0063458962807372616960635962777958406303110$
4Anders BjorkX100.0062408864727475626065616362676458406202410$
5Colin McDonaldX100.0071468958848789575456555857867649406203610$
6Austin PoganskiX100.0062428860777880595460586159676459406102410$
7Lance BoumaX100.0068577858828688575254565955786753406103010$
8Ryan McLeodX100.0068478763828685616759545658616376406102110$
9Remi ElieX100.0064438661807269585357596062696572406002510$
10Xavier OuelletX100.0064438963768172623061586455737662406402710$
11Joe HickettsX100.0055458863648574623061576553676354406302410$
12Oliwer KaskiX100.0065458458818487563055575947696561406302510$
13Dominik MasinX100.0067617858838789563054525745676474406202410$
14Nicolas MelocheX100.0071538258858381563055525945656375406202310$
15Joel PerssonX100.0058378662667868613060575948716653406102610$
16Kyle CumiskeyX100.0053398760687776613059545745847451406103410$
17Keaton ThompsonX100.0056488657718384563055515345696561406002510$
Scratches
1Sheldon RempalX100.0055438961637674595560585759696556406002510$
2Tanner MacMasterX100.0052488557658688595458555659676459405902510$
3Joe SnivelyX100.0054418559638178575456585357676454405802510$
4Patrick RussellX100.0068398255786966535154506255736738405802810$
5Parker KellyX100.0053418654558688535552565754616264405702110$
6Bode WildeX100.0063438755797276533052505445616276405802010$
TEAM AVERAGE100.00634685607480795847585659557067604061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mike Condon100.00765351807574767574767578845640720
2Dustin Tokarski100.00727573747170727170727179855440710
Scratches
1Matt Villalta100.00697371766867696867696861656640670
TEAM AVERAGE100.0072676577717072717072717378594070
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Brent Thompson63646470767176CAN494500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anders BjorkChicago Wolves (VGK)LW6606320861751035.29%211319.00101423000001071.43%700001.0500000201
2Austin PoganskiChicago Wolves (VGK)RW60444407468130.00%011419.05000124000000025.00%400000.7000000001
3Joe HickettsChicago Wolves (VGK)D6044-120454030.00%811919.94011223000023000.00%000000.6700000000
4Tobias RiederChicago Wolves (VGK)C6134-220417174185.88%114724.610116210110181051.61%12400000.5400000000
5Lance BoumaChicago Wolves (VGK)LW6123-2207351720.00%39816.3510128000060026.09%2300000.6100000000
6Xavier OuelletChicago Wolves (VGK)D6213016065122616.67%112721.32101928000016100.00%000100.4700000010
7Kyle CliffordChicago Wolves (VGK)LW6112-36020713667.69%013923.290111241012230044.00%2500000.2900000000
8Nicolas MelocheChicago Wolves (VGK)D6022260900010.00%47212.0000000000000033.33%300000.5600000001
9Zac DalpeChicago Wolves (VGK)C6112340612102810.00%013923.230110200000120046.15%11700000.2900000010
10Colin McDonaldChicago Wolves (VGK)RW6011-3002510150.00%011318.970005270000140050.00%600000.1800000000
11Dominik MasinChicago Wolves (VGK)D6011080942000.00%511519.30000123011020000.00%000000.1700000000
12Ryan McLeodChicago Wolves (VGK)C6011020177260.00%19015.0401105000060052.46%6100000.2200000000
13Joel PerssonChicago Wolves (VGK)D6000200271110.00%17512.510000000009000.00%000000.0000000000
14Keaton ThompsonChicago Wolves (VGK)D6000-100310120.00%1396.550000000000000.00%000000.0000000000
15Kyle CumiskeyChicago Wolves (VGK)D6000-120001030.00%6477.910000000005000.00%000000.0000000000
16Oliwer KaskiChicago Wolves (VGK)D6000095848420.00%513021.76000628000022000.00%000000.0000100000
17Remi ElieChicago Wolves (VGK)LW6000000144130.00%27212.05000010000140058.82%1700000.0000000000
Team Total or Average10212213316559791117389410.26%40175717.233583726112321953048.32%38700100.3800100223
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mike CondonChicago Wolves (VGK)63210.8742.1536300131030000.000060000
Team Total or Average63210.8742.1536300131030000.000060000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anders BjorkChicago Wolves (VGK)LW248/5/1996No190 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Austin PoganskiChicago Wolves (VGK)RW242/16/1996No198 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Bode WildeChicago Wolves (VGK)D201/24/2000No192 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Colin McDonaldChicago Wolves (VGK)RW369/30/1984No219 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Dominik MasinChicago Wolves (VGK)D242/1/1996No198 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Dustin TokarskiChicago Wolves (VGK)G319/16/1989No198 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Joe HickettsChicago Wolves (VGK)D245/4/1996No180 Lbs5 ft8NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Joe SnivelyChicago Wolves (VGK)LW251/1/1996No170 Lbs5 ft9NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Joel PerssonChicago Wolves (VGK)D263/4/1994No170 Lbs5 ft11NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Keaton ThompsonChicago Wolves (VGK)D259/14/1995No182 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Kyle CliffordChicago Wolves (VGK)LW301/13/1991No211 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Kyle CumiskeyChicago Wolves (VGK)D3412/2/1986No180 Lbs5 ft11NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Lance BoumaChicago Wolves (VGK)LW303/25/1990No208 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Matt VillaltaChicago Wolves (VGK)G216/3/1999No165 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Mike CondonChicago Wolves (VGK)G304/27/1990No196 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Nicolas MelocheChicago Wolves (VGK)D237/18/1997No210 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Oliwer KaskiChicago Wolves (VGK)D259/4/1995No190 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Parker KellyChicago Wolves (VGK)LW215/14/1999No168 Lbs5 ft11NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Patrick RussellChicago Wolves (VGK)RW281/4/1993No203 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Remi ElieChicago Wolves (VGK)LW254/16/1995No215 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Ryan McLeodChicago Wolves (VGK)C219/21/1999No207 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Sheldon RempalChicago Wolves (VGK)RW258/7/1995No165 Lbs5 ft10NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Tanner MacMasterChicago Wolves (VGK)LW251/8/1996No171 Lbs5 ft10NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Tobias RiederChicago Wolves (VGK)C281/10/1993No186 Lbs5 ft11NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Xavier OuelletChicago Wolves (VGK)D277/29/1993No193 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Zac DalpeChicago Wolves (VGK)C3111/1/1989No197 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2626.27191 Lbs6 ft11.000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kyle CliffordTobias RiederColin McDonald40122
2Anders BjorkZac DalpeAustin Poganski30122
3Lance BoumaRyan McLeodTobias Rieder20122
4Remi ElieKyle CliffordZac Dalpe10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Xavier OuelletOliwer Kaski40122
2Joe HickettsDominik Masin30122
3Nicolas MelocheJoel Persson20122
4Kyle CumiskeyKeaton Thompson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kyle CliffordTobias RiederColin McDonald60122
2Anders BjorkZac DalpeAustin Poganski40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Xavier OuelletOliwer Kaski60122
2Joe HickettsDominik Masin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Tobias RiederKyle Clifford60122
2Zac DalpeColin McDonald40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Xavier OuelletOliwer Kaski60122
2Joe HickettsDominik Masin40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tobias Rieder60122Xavier OuelletOliwer Kaski60122
2Kyle Clifford40122Joe HickettsDominik Masin40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Tobias RiederKyle Clifford60122
2Zac DalpeColin McDonald40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Xavier OuelletOliwer Kaski60122
2Joe HickettsDominik Masin40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Kyle CliffordTobias RiederColin McDonaldXavier OuelletOliwer Kaski
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kyle CliffordTobias RiederColin McDonaldXavier OuelletOliwer Kaski
Extra Forwards
Normal PowerPlayPenalty Kill
Lance Bouma, Ryan McLeod, Remi ElieLance Bouma, Ryan McLeodRemi Elie
Extra Defensemen
Normal PowerPlayPenalty Kill
Nicolas Meloche, Joel Persson, Kyle CumiskeyNicolas MelocheJoel Persson, Kyle Cumiskey
Penalty Shots
Tobias Rieder, Kyle Clifford, Zac Dalpe, Colin McDonald, Anders Bjork
Goalie
#1 : Mike Condon, #2 : Dustin Tokarski
Custom OT Lines Forwards
Tobias Rieder, Kyle Clifford, Zac Dalpe, Colin McDonald, Anders Bjork, Lance Bouma, Lance Bouma, Ryan McLeod, Austin Poganski, Remi Elie,
Custom OT Lines Defensemen
Xavier Ouellet, Oliwer Kaski, Joe Hicketts, Dominik Masin, Nicolas Meloche


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Hershey Bears2110000024-22110000024-20000000000020.500246004440363647340331722351317.69%11372.73%07115346.41%8014754.42%368542.35%146100138467836
2Portland Pirates11000000321000000000001100000032121.00034700444018364734022614105120.00%60100.00%17115346.41%8014754.42%368542.35%146100138467836
3Texas Stars1000010023-11000010023-10000000000010.5002460044402036473401838185120.00%40100.00%07115346.41%8014754.42%368542.35%146100138467836
4Wilkes-Barre/Scranton Penguins21100000541211000005410000000000020.500591400444043364734030142134600.00%8187.50%07115346.41%8014754.42%368542.35%146100138467836
Total632001001213-152200100911-21100000032170.583122133004440117364734010340659729310.34%29486.21%17115346.41%8014754.42%368542.35%146100138467836
_Since Last GM Reset632001001213-152200100911-21100000032170.583122133004440117364734010340659729310.34%29486.21%17115346.41%8014754.42%368542.35%146100138467836
_Vs Conference53200000101004220000078-11100000032160.600101727004440973647340853757792428.33%25484.00%17115346.41%8014754.42%368542.35%146100138467836

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
67L112213311710340659700
All Games
GPWLOTWOTL SOWSOLGFGA
63201001213
Home Games
GPWLOTWOTL SOWSOLGFGA
5220100911
Visitor Games
GPWLOTWOTL SOWSOLGFGA
110000032
Last 10 Games
WLOTWOTL SOWSOL
320100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
29310.34%29486.21%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
36473404440
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
7115346.41%8014754.42%368542.35%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
146100138467836


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-01-057Hershey Bears1Chicago Wolves2WBoxScore
2 - 2021-01-0613Chicago Wolves3Portland Pirates2WBoxScore
11 - 2021-01-1548Wilkes-Barre/Scranton Penguins2Chicago Wolves1LBoxScore
16 - 2021-01-2070Texas Stars3Chicago Wolves2LXBoxScore
21 - 2021-01-2596Wilkes-Barre/Scranton Penguins2Chicago Wolves4WBoxScore
27 - 2021-01-31126Hershey Bears3Chicago Wolves0LBoxScore
33 - 2021-02-06156Texas Stars-Chicago Wolves-
34 - 2021-02-07159Chicago Wolves-Worcester Sharks-
38 - 2021-02-11185Binghamton Senators-Chicago Wolves-
45 - 2021-02-18218Abbotsford Heat-Chicago Wolves-
47 - 2021-02-20229Chicago Wolves-Wilkes-Barre/Scranton Penguins-
51 - 2021-02-24246Chicago Wolves-Norfolk Admirals-
52 - 2021-02-25252Syracuse Crunch-Chicago Wolves-
55 - 2021-02-28267Chicago Wolves-Grand Rapids Griffins-
58 - 2021-03-03280Adirondack Phantoms-Chicago Wolves-
60 - 2021-03-05291Chicago Wolves-Providence Bruins-
63 - 2021-03-08310Albany Devils-Chicago Wolves-
70 - 2021-03-15342Rockford IceHogs-Chicago Wolves-
74 - 2021-03-19373Binghamton Senators-Chicago Wolves-
76 - 2021-03-21382Chicago Wolves-Worcester Sharks-
80 - 2021-03-25404Connecticut Whale-Chicago Wolves-
82 - 2021-03-27414Chicago Wolves-Abbotsford Heat-
85 - 2021-03-30430Chicago Wolves-Connecticut Whale-
86 - 2021-03-31435Toronto Marlies-Chicago Wolves-
92 - 2021-04-06466Lake Erie Monsters-Chicago Wolves-
97 - 2021-04-11492Chicago Wolves-Manchester Monarchs-
98 - 2021-04-12497Providence Bruins-Chicago Wolves-
103 - 2021-04-17528Charlotte Checkers-Chicago Wolves-
106 - 2021-04-20548Chicago Wolves-Oklahoma City Barons-
108 - 2021-04-22556Chicago Wolves-Portland Pirates-
109 - 2021-04-23560Oklahoma City Barons-Chicago Wolves-
113 - 2021-04-27582Chicago Wolves-Portland Pirates-
114 - 2021-04-28590Wilkes-Barre/Scranton Penguins-Chicago Wolves-
121 - 2021-05-05621Peoria Rivermen-Chicago Wolves-
128 - 2021-05-12652Grand Rapids Griffins-Chicago Wolves-
130 - 2021-05-14663Chicago Wolves-Charlotte Checkers-
132 - 2021-05-16672Chicago Wolves-Toronto Marlies-
134 - 2021-05-18683Rochester Americans-Chicago Wolves-
140 - 2021-05-24714Springfield Falcons-Chicago Wolves-
142 - 2021-05-26723Chicago Wolves-Lake Erie Monsters-
144 - 2021-05-28736Chicago Wolves-Norfolk Admirals-
146 - 2021-05-30745Portland Pirates-Chicago Wolves-
148 - 2021-06-01754Chicago Wolves-San Antonio Rampage-
151 - 2021-06-04773San Antonio Rampage-Chicago Wolves-
154 - 2021-06-07787Chicago Wolves-Texas Stars-
157 - 2021-06-10806Syracuse Crunch-Chicago Wolves-
164 - 2021-06-17838Norfolk Admirals-Chicago Wolves-
166 - 2021-06-19853Chicago Wolves-Syracuse Crunch-
168 - 2021-06-21862Chicago Wolves-Albany Devils-
169 - 2021-06-22868Milwaukee Admirals-Chicago Wolves-
173 - 2021-06-26886Chicago Wolves-Springfield Falcons-
176 - 2021-06-29899Chicago Wolves-Bridgeport Sound Tigers-
177 - 2021-06-30905Norfolk Admirals-Chicago Wolves-
181 - 2021-07-04931Hershey Bears-Chicago Wolves-
187 - 2021-07-10962Rochester Americans-Chicago Wolves-
189 - 2021-07-12970Chicago Wolves-Peoria Rivermen-
191 - 2021-07-14984Chicago Wolves-Milwaukee Admirals-
192 - 2021-07-15993Houston Aeros-Chicago Wolves-
197 - 2021-07-201020Chicago Wolves-Bridgeport Sound Tigers-
198 - 2021-07-211024Texas Stars-Chicago Wolves-
203 - 2021-07-261055St. John's-Chicago Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
208 - 2021-07-311086Chicago Wolves-Chicago Wolves-
210 - 2021-08-021096Chicago Wolves-Rochester Americans-
212 - 2021-08-041109Chicago Wolves-Binghamton Senators-
213 - 2021-08-051117Hamilton Bulldogs-Chicago Wolves-
216 - 2021-08-081139Chicago Wolves-Hamilton Bulldogs-
218 - 2021-08-101148Worcester Sharks-Chicago Wolves-
220 - 2021-08-121160Chicago Wolves-Worcester Sharks-
224 - 2021-08-161179Manchester Monarchs-Chicago Wolves-
226 - 2021-08-181189Chicago Wolves-Wilkes-Barre/Scranton Penguins-
227 - 2021-08-191195Chicago Wolves-Chicago Wolves-
230 - 2021-08-221206Chicago Wolves-Adirondack Phantoms-
231 - 2021-08-231210Abbotsford Heat-Chicago Wolves-
232 - 2021-08-241211Chicago Wolves-St. John's-
233 - 2021-08-251214Chicago Wolves-Hershey Bears-
236 - 2021-08-281232Chicago Wolves-Binghamton Senators-
238 - 2021-08-301241Bridgeport Sound Tigers-Chicago Wolves-
239 - 2021-08-311242Chicago Wolves-St. John's-
240 - 2021-09-011243Chicago Wolves-Hershey Bears-
243 - 2021-09-041256Chicago Wolves-Rockford IceHogs-
245 - 2021-09-061266Chicago Wolves-Syracuse Crunch-
246 - 2021-09-071270Chicago Wolves-Houston Aeros-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
36 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 0$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 215 2,024$ 435,160$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201682254604511245296-5141152201201129144-1541102403310116152-366624544468935097687525570788853903282683574320282885920.49%3196479.94%41375281748.81%1358282448.09%672139248.28%1833120220096441102536
201782243808930211234-2341102205310112125-134114160362099109-107921137158212073527523130764725785272882490920203225617.39%3615185.87%31442285150.58%1528309649.35%622124949.80%1856122420406441079528
2018822837021131256295-3941162001310127142-1541121701821129153-2478256453709310104678023700787755798286281991321252556324.71%3928977.30%41368263851.86%1526305349.98%702135151.96%1857122720256331088536
201982293504824219264-4541141503612109130-2141152001212110134-248221940562402066678025580847816859305989771220942314921.21%2956577.97%21345281847.73%1506324946.35%621129248.07%1909130420186081049515
1632001001213-152200100911-2110000003217122133004440117364734010340659729310.34%29486.21%17115346.41%8014754.42%368542.35%146100138467836
Total Regular Season33410915801834969431102-15916957810101533486552-661655277081963457550-9331294316942637710434425831099153632333183334511578341533428364112523020.44%139627380.44%1456011127749.67%59981236948.49%2653536949.41%760350598232257643982154