Chicago Wolves
GP: 12 | W: 8 | L: 3 | OTL: 1 | P: 17
GF: 25 | GA: 18 | PP%: 11.11% | PK%: 90.00%
GM : | Morale : 40 | Team Overall : 62
Next Games #155 vs Rockford IceHogs
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Michael RasmussenX100.0078488763987571647361626563616286406402110$
2Milan LucicX100.0094716659907388625665615759807346406403210$
3Denis MalginX100.0067388666657880647765626166656361406302410$
4Brett MurrayX100.0083478958978587575456556258636264406202210$
5Brett RitchieX100.0084507861897375595257586059736862406202710$
6Lias AnderssonX100.0063428461757778627458596065636287406102210$
7Nick LappinX100.0058428960727973615458596260756556406102810$
8Turner ElsonX100.0061568258738891595557575658756857406102810$
9Dave GustX100.0051458959658685575458585657716659406002610$
10Yannick WeberX100.0071398564727378623063566152807341406403210$
11Brandon DavidsonX100.0064458761827672593058586053776955406302910$
12Joey KeaneX100.0059488564728987633062555652616463406302110$
13Andrew PeekeX100.0064429061827567593060586247636277406202210$
14Nelson NogierX100.0062478859797776583057566053676459406202410$
15Christian DjoosX100.0058408862707974613063565753716653406102610$
16Dysin MayoX100.0062518656768789543052535745676456406102410$
17Alec McCreaX100.0070468655857473533054505746696554406002610$
Scratches
1Mikhail MaltsevX100.0067448159838481585355575659636266406002210$
2Joseph CramarossaX100.0059706657738986565254545557756855405902810$
3Jermaine LoewenX100.0076596654907572535150525754635954405702310$
4Kevin HancockX100.0053408656687776555351545752626159405702210$
5David QuennevilleX100.0053418756667372543055525345636264405702210$
TEAM AVERAGE100.00664883607879795947585659556965614061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Oscar Dansk100.00767068827574767574767571757440730
2Charlie Lindgren100.00756563737473757473757473775840710
Scratches
1Brad Thiessen100.00656664706463656463656484885140660
TEAM AVERAGE100.0072676575717072717072717680614070
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Paul MacLean62746071938751CAN624500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael RasmussenChicago Wolves (VAN)C12279-100221314296.45%328023.3605515560001520054.33%25400000.6422000002
2Joey KeaneChicago Wolves (VAN)D12347-1155910192515.79%923619.693141759011042200.00%000000.5900001000
3Denis MalginChicago Wolves (VAN)C122465100524314216.45%324920.810118570000300055.69%24600000.4812000002
4Yannick WeberChicago Wolves (VAN)D121564200191274814.29%626121.81011458000039100.00%000000.4600000010
5Andrew PeekeChicago Wolves (VAN)D12235-14046142514.29%523719.80112958000045000.00%000000.4200000010
6Brandon DavidsonChicago Wolves (VAN)D1241548076155726.67%1526622.214041258000045010.00%000000.3800000010
7Brett MurrayChicago Wolves (VAN)LW1223551203313251178.00%224720.650225571012291060.00%1000000.4011000100
8Milan LucicChicago Wolves (VAN)LW1214501954315205115.00%227022.570333550001470043.93%10700000.3712010001
9Brett RitchieChicago Wolves (VAN)RW1222416012101951310.53%021818.22000256000001046.67%1500000.3700000200
10Nick LappinChicago Wolves (VAN)RW1212340029204215.00%121417.89011658000000043.75%1600000.2800000000
11Dave GustChicago Wolves (VAN)RW12202-14048163712.50%120016.72000030000211046.15%2600000.2000000010
12Lias AnderssonChicago Wolves (VAN)C12022-180142493150.00%118215.2400003000030052.14%14000000.2200000000
13Nelson NogierChicago Wolves (VAN)D12112-110012121050.00%513711.500000100001010.00%000000.2900000001
14Turner ElsonChicago Wolves (VAN)LW12022-2115121314390.00%119616.39000050000110038.10%2100000.2000100000
15Alec McCreaChicago Wolves (VAN)D12000180310110.00%3746.230000000000000.00%000000.0000000000
16Christian DjoosChicago Wolves (VAN)D12000-14012101100.00%415112.6400000000019000.00%000000.0000000000
17Dysin MayoChicago Wolves (VAN)D12000140603120.00%3847.040000100007000.00%000000.0000000000
Team Total or Average2042340631614315199183246491719.35%64351317.22815238159111243986252.10%83500000.3657111346
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskChicago Wolves (VAN)128310.9121.4872824182040000.5717120421
Team Total or Average128310.9121.4872824182040000.5717120421


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alec McCreaChicago Wolves (VAN)D261/12/1995No208 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Andrew PeekeChicago Wolves (VAN)D223/17/1998No194 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Brad ThiessenChicago Wolves (VAN)G343/19/1986No180 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Brandon DavidsonChicago Wolves (VAN)D298/21/1991No208 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Brett MurrayChicago Wolves (VAN)LW227/20/1998No236 Lbs6 ft5NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Brett RitchieChicago Wolves (VAN)RW277/1/1993No220 Lbs6 ft4NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Charlie LindgrenChicago Wolves (VAN)G2712/18/1993No180 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Christian DjoosChicago Wolves (VAN)D268/6/1994No180 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Dave GustChicago Wolves (VAN)RW262/21/1994No174 Lbs5 ft10NoNoNo1Pro & Farm0$0$NoLink / NHL Link
David QuennevilleChicago Wolves (VAN)D223/13/1998No189 Lbs5 ft8NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Denis MalginChicago Wolves (VAN)C241/18/1997No177 Lbs5 ft9NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Dysin MayoChicago Wolves (VAN)D248/17/1996No194 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Jermaine LoewenChicago Wolves (VAN)RW231/18/1998No220 Lbs6 ft4NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Joey KeaneChicago Wolves (VAN)D217/2/1999No187 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Joseph CramarossaChicago Wolves (VAN)LW2810/26/1992No192 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Kevin HancockChicago Wolves (VAN)LW223/2/1998No180 Lbs5 ft11NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Lias AnderssonChicago Wolves (VAN)C2210/13/1998No190 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Michael RasmussenChicago Wolves (VAN)C214/17/1999No229 Lbs6 ft6NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Mikhail MaltsevChicago Wolves (VAN)LW223/12/1998No198 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Milan LucicChicago Wolves (VAN)LW326/7/1988No231 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Nelson NogierChicago Wolves (VAN)D245/27/1996No191 Lbs6 ft2NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Nick LappinChicago Wolves (VAN)RW2811/1/1992No175 Lbs6 ft1NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Oscar DanskChicago Wolves (VAN)G262/28/1994No195 Lbs6 ft3NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Turner ElsonChicago Wolves (VAN)LW289/13/1992No195 Lbs6 ft0NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Yannick WeberChicago Wolves (VAN)D329/23/1988No200 Lbs5 ft11NoNoNo1Pro & Farm0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2525.52197 Lbs6 ft11.000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Milan LucicMichael RasmussenBrett Ritchie40122
2Brett MurrayDenis MalginNick Lappin30122
3Turner ElsonLias AnderssonDave Gust20122
4Michael RasmussenMilan LucicDenis Malgin10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Yannick WeberBrandon Davidson40122
2Joey KeaneAndrew Peeke30122
3Nelson NogierChristian Djoos20122
4Dysin MayoAlec McCrea10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Milan LucicMichael RasmussenBrett Ritchie60122
2Brett MurrayDenis MalginNick Lappin40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Yannick WeberBrandon Davidson60122
2Joey KeaneAndrew Peeke40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Milan LucicMichael Rasmussen60122
2Denis MalginBrett Murray40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Yannick WeberBrandon Davidson60122
2Joey KeaneAndrew Peeke40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Milan Lucic60122Yannick WeberBrandon Davidson60122
2Michael Rasmussen40122Joey KeaneAndrew Peeke40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Milan LucicMichael Rasmussen60122
2Denis MalginBrett Murray40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Yannick WeberBrandon Davidson60122
2Joey KeaneAndrew Peeke40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Milan LucicMichael RasmussenBrett RitchieYannick WeberBrandon Davidson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Milan LucicMichael RasmussenBrett RitchieYannick WeberBrandon Davidson
Extra Forwards
Normal PowerPlayPenalty Kill
Turner Elson, Lias Andersson, Dave GustTurner Elson, Lias AnderssonDave Gust
Extra Defensemen
Normal PowerPlayPenalty Kill
Nelson Nogier, Christian Djoos, Dysin MayoNelson NogierChristian Djoos, Dysin Mayo
Penalty Shots
Milan Lucic, Michael Rasmussen, Denis Malgin, Brett Murray, Brett Ritchie
Goalie
#1 : Oscar Dansk, #2 : Charlie Lindgren
Custom OT Lines Forwards
Milan Lucic, Michael Rasmussen, Denis Malgin, Brett Murray, Brett Ritchie, Turner Elson, Turner Elson, Lias Andersson, Nick Lappin, Dave Gust,
Custom OT Lines Defensemen
Yannick Weber, Brandon Davidson, Joey Keane, Andrew Peeke, Nelson Nogier


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Abbotsford Heat2010001035-2100000102111010000014-320.50034700571153385897183010183313215.38%8187.50%019436153.74%16331352.08%7815251.32%2901942839415577
2Charlotte Checkers1000010023-1000000000001000010023-110.50023500571152285897181801023400.00%5260.00%019436153.74%16331352.08%7815251.32%2901942839415577
3Milwaukee Admirals22000000523110000002021100000032141.00057120157115448589718327342818211.11%110100.00%019436153.74%16331352.08%7815251.32%2901942839415577
4Peoria Rivermen22000000532000000000002200000053241.00059140157115488589718301027259111.11%8187.50%019436153.74%16331352.08%7815251.32%2901942839415577
5Portland Pirates1010000001-1000000000001010000001-100.00000000571151285897181731222800.00%6183.33%019436153.74%16331352.08%7815251.32%2901942839415577
6Rochester Americans31100010743210000105141010000023-140.6677121901571156585897186223344714321.43%17194.12%019436153.74%16331352.08%7815251.32%2901942839415577
7Rockford IceHogs11000000303000000000001100000030321.000358015711522858971815111021600.00%50100.00%119436153.74%16331352.08%7815251.32%2901942839415577
Total12630012025187420000209278430010016160170.708254065045711524685897182046414519972811.11%60690.00%119436153.74%16331352.08%7815251.32%2901942839415577
_Since Last GM Reset12630012025187420000209278430010016160170.708254065045711524685897182046414519972811.11%60690.00%119436153.74%16331352.08%7815251.32%2901942839415577
_Vs Conference11620012025178420000209277420010016151170.773254065045711523485897181876113317764812.50%54590.74%119436153.74%16331352.08%7815251.32%2901942839415577
_Vs Division3500010036-3110000002112400010015-4111.8333470057115458589718471330552129.52%14285.71%019436153.74%16331352.08%7815251.32%2901942839415577

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1217L22540652462046414519904
All Games
GPWLOTWOTL SOWSOLGFGA
126301202518
Home Games
GPWLOTWOTL SOWSOLGFGA
420002092
Visitor Games
GPWLOTWOTL SOWSOLGFGA
84301001616
Last 10 Games
WLOTWOTL SOWSOL
530110
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
72811.11%60690.00%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
858971857115
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
19436153.74%16331352.08%7815251.32%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2901942839415577


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-01-055Rochester Americans1Chicago Wolves2WXXBoxScore
4 - 2021-01-0823Chicago Wolves4Peoria Rivermen3WBoxScore
7 - 2021-01-1133Chicago Wolves1Abbotsford Heat4LBoxScore
8 - 2021-01-1235Chicago Wolves3Rockford IceHogs0WBoxScore
12 - 2021-01-1654Chicago Wolves2Charlotte Checkers3LXBoxScore
14 - 2021-01-1861Rochester Americans0Chicago Wolves3WBoxScore
19 - 2021-01-2386Milwaukee Admirals0Chicago Wolves2WBoxScore
22 - 2021-01-2699Chicago Wolves3Milwaukee Admirals2WBoxScore
24 - 2021-01-28112Chicago Wolves1Peoria Rivermen0WBoxScore
27 - 2021-01-31124Abbotsford Heat1Chicago Wolves2WXXBoxScore
29 - 2021-02-02136Chicago Wolves0Portland Pirates1LBoxScore
30 - 2021-02-03145Chicago Wolves2Rochester Americans3LBoxScore
33 - 2021-02-06155Rockford IceHogs-Chicago Wolves-
38 - 2021-02-11184Grand Rapids Griffins-Chicago Wolves-
44 - 2021-02-17210Rochester Americans-Chicago Wolves-
48 - 2021-02-21234Houston Aeros-Chicago Wolves-
53 - 2021-02-26256Chicago Wolves-Rockford IceHogs-
55 - 2021-02-28269Norfolk Admirals-Chicago Wolves-
60 - 2021-03-05294San Antonio Rampage-Chicago Wolves-
64 - 2021-03-09316Adirondack Phantoms-Chicago Wolves-
69 - 2021-03-14341Chicago Wolves-Norfolk Admirals-
71 - 2021-03-16352Lake Erie Monsters-Chicago Wolves-
73 - 2021-03-18368Chicago Wolves-Adirondack Phantoms-
75 - 2021-03-20378Wilkes-Barre/Scranton Penguins-Chicago Wolves-
81 - 2021-03-26407Springfield Falcons-Chicago Wolves-
84 - 2021-03-29422Chicago Wolves-Oklahoma City Barons-
87 - 2021-04-01438Milwaukee Admirals-Chicago Wolves-
92 - 2021-04-06463Chicago Wolves-Manchester Monarchs-
93 - 2021-04-07471Bridgeport Sound Tigers-Chicago Wolves-
98 - 2021-04-12498Syracuse Crunch-Chicago Wolves-
103 - 2021-04-17527Chicago Wolves-Portland Pirates-
104 - 2021-04-18532Rockford IceHogs-Chicago Wolves-
108 - 2021-04-22559Albany Devils-Chicago Wolves-
110 - 2021-04-24566Chicago Wolves-Abbotsford Heat-
113 - 2021-04-27581Chicago Wolves-Texas Stars-
115 - 2021-04-29593Grand Rapids Griffins-Chicago Wolves-
117 - 2021-05-01602Chicago Wolves-Hamilton Bulldogs-
119 - 2021-05-03612Chicago Wolves-Wilkes-Barre/Scranton Penguins-
122 - 2021-05-06624Rochester Americans-Chicago Wolves-
128 - 2021-05-12654Abbotsford Heat-Chicago Wolves-
134 - 2021-05-18684Hershey Bears-Chicago Wolves-
137 - 2021-05-21699Chicago Wolves-Syracuse Crunch-
139 - 2021-05-23713Chicago Wolves-Bridgeport Sound Tigers-
140 - 2021-05-24716Portland Pirates-Chicago Wolves-
143 - 2021-05-27731Chicago Wolves-Toronto Marlies-
146 - 2021-05-30747Toronto Marlies-Chicago Wolves-
148 - 2021-06-01753Chicago Wolves-Worcester Sharks-
153 - 2021-06-06777Chicago Wolves-St. John's-
154 - 2021-06-07784Abbotsford Heat-Chicago Wolves-
158 - 2021-06-11809Binghamton Senators-Chicago Wolves-
161 - 2021-06-14822Chicago Wolves-Rochester Americans-
164 - 2021-06-17840Manchester Monarchs-Chicago Wolves-
169 - 2021-06-22869Hamilton Bulldogs-Chicago Wolves-
171 - 2021-06-24879Chicago Wolves-Rockford IceHogs-
174 - 2021-06-27894Chicago Wolves-Connecticut Whale-
176 - 2021-06-29902Houston Aeros-Chicago Wolves-
178 - 2021-07-01914Chicago Wolves-Lake Erie Monsters-
179 - 2021-07-02922Chicago Wolves-Binghamton Senators-
182 - 2021-07-05935Providence Bruins-Chicago Wolves-
184 - 2021-07-07948Chicago Wolves-Springfield Falcons-
186 - 2021-07-09954Chicago Wolves-Providence Bruins-
188 - 2021-07-11968Connecticut Whale-Chicago Wolves-
190 - 2021-07-13981Chicago Wolves-Albany Devils-
193 - 2021-07-16997Chicago Wolves-Hershey Bears-
194 - 2021-07-171004St. John's-Chicago Wolves-
199 - 2021-07-221031Charlotte Checkers-Chicago Wolves-
202 - 2021-07-251046Chicago Wolves-Milwaukee Admirals-
204 - 2021-07-271061Oklahoma City Barons-Chicago Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
206 - 2021-07-291070Chicago Wolves-Grand Rapids Griffins-
208 - 2021-07-311086Chicago Wolves-Chicago Wolves-
210 - 2021-08-021093Chicago Wolves-Charlotte Checkers-
211 - 2021-08-031102Charlotte Checkers-Chicago Wolves-
214 - 2021-08-061125Texas Stars-Chicago Wolves-
215 - 2021-08-071130Chicago Wolves-Peoria Rivermen-
219 - 2021-08-111156Chicago Wolves-Charlotte Checkers-
221 - 2021-08-131163Worcester Sharks-Chicago Wolves-
223 - 2021-08-151176Chicago Wolves-Houston Aeros-
227 - 2021-08-191195Chicago Wolves-Chicago Wolves-
234 - 2021-08-261219Peoria Rivermen-Chicago Wolves-
236 - 2021-08-281231Chicago Wolves-San Antonio Rampage-
242 - 2021-09-031250Chicago Wolves-Rochester Americans-
244 - 2021-09-051262Peoria Rivermen-Chicago Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
37 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 0$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 215 2,024$ 435,160$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201682402507622260225354123120230113110625411713053211291191010626045671614096827327150873901916262275387919443117022.51%3716383.02%51503290251.79%1607305952.53%652133148.99%1921127319406571106552
201782333605521235249-1441161504420112118-641172101101123131-88623541865361074906426080817889875256975788020013305717.27%3566581.74%31516295951.23%1555294652.78%688130452.76%1948131619356331076529
2018822935010512258279-2141141906002130141-1141151604510128138-1087258474732210101796726270839848904282679581520483126520.83%3486780.75%21556289753.71%1601306952.17%675131351.41%1869124220166411079530
201982204605353224281-5741102102152121140-1941102503201103141-386622440362713077706726730879878888282189163619562154018.60%2695579.55%21504293351.28%1432288649.62%651129050.47%1942134019726021068522
11263001202518742000020927843001001616017254065045711524685897182046414519972811.11%60690.00%119436153.74%16331352.08%7815251.32%2901942839415577
Total Regular Season3401281450272012810021052-501686567014895503507-417263780131233499545-4636210021791279310135355332276108698534973587359111042326033558148124024019.35%140425681.77%1362731205252.05%63581227351.80%2744539050.91%797153678148262944862213
Playoff
2016624000001014-4321000008713030000027-54101525100343185073526017854681542328.70%26292.31%111321652.31%9620048.00%449347.31%14698131448140
2018514000001021-1121100000810-230300000211-921018281003341230274155177455212512325.00%21480.95%08315653.21%10918259.89%427556.00%11274122386531
Total Playoff1138000002035-15532000001617-160600000418-1462033532006773080100931153559912027935514.29%47687.23%119637252.69%20538253.66%8616851.19%2581732548314672